## Exercises, Algebraic Geometry I – Week 10

#### Exercise 60. Invertible sheaves (3 points)

Let  $\varphi \colon \mathcal{L} \to \mathcal{M}$  be a homomorphism of invertible sheaves on a scheme X.

- (i) Show that  $\varphi$  is an isomorphism if  $\varphi$  is surjective.
- (ii) Give an example where  $\varphi$  is injective but not an isomorphism.

# Exercise 61. Trivializing invertible sheaves (3 points)

Assume  $\mathcal{L}$  is an invertible sheaf on an integral scheme X which is projective over an algebraically closed field k. Show that L is trivial if and only if  $H^0(X, \mathcal{L}) \neq 0 \neq H^0(X, \mathcal{L}^*)$ .

#### Exercise 62. Tensor products of ample line bundles (3 points)

Let  $f: X \to Y$  and  $g: Y \to Z$  be two morphisms of schemes. Let  $\mathcal{L}$  and  $\mathcal{M}$  be f-relatively very ample invertible sheaves on X, and let  $\mathcal{N}$  be a g-relatively very ample invertible sheaf on Y.

- (i) Show that  $\mathcal{L} \otimes \mathcal{M}$  is f-relatively very ample.
- (ii) Show that  $\mathcal{L} \otimes f^* \mathcal{N}$  is  $(g \circ f)$ -relatively very ample.

### Exercise 63. Ramified coverings (5 points)

Consider a homogeneous polynomial  $f \in k[x_0, \ldots, x_n]$  of degree d and the two closed subschemes  $X = V_+(f) \subset \mathbb{P}^n_k$  and  $Y = V_+(f - x_{n+1}^d) \subset \mathbb{P}^{n+1}_k$ . Here, k is an algebraically closed field of characteristic char $(k) = p \nmid d$ . Show that there exists a morphism  $g \colon Y \to \mathbb{P}^n_k$  with the following properties:

- (i) Restricted to the intersection  $Y \cap V_+(x_{n+1}) = V_+(f x_{n+1}^d, x_{n+1}) \subset \mathbb{P}_k^{n+1}$  the morphism g yields an isomorphism with X.
- (ii) For every closed point in the complement of  $X \subset \mathbb{P}^n_k$  the fibre of g is a reduced scheme consisting of exactly d k-rational points.
- (iii) There exists a divisor D on Y such that the invertible sheaf  $\mathcal{O}(D)$  associated to it is a d-th root of the pull-back of the invertible sheaf associated to  $X \subset \mathbb{P}^n_k$ , i.e.  $\mathcal{O}(dD) \cong g^*\mathcal{O}(X)$ .

Due Friday 22 January 2021.

**Exercise 64.** Example linear systems (4 points) Consider  $s_0 := x_0^2, s_1 := x_1^2, s_2 := x_0x_1, s_3 := x_0x_2, s_4 := x_1x_2, s_5 := x_2^2 \in H^0(\mathbb{P}^2_k, \mathcal{O}(2))$ , where k is an algebraically closed field.

- (i) Determine the maximal open set  $U \subset \mathbb{P}^2_k$  on which the map to  $\mathbb{P}^4_k$  determined by  $s_0, s_1, s_2, s_3, s_4$  is regular.
- (ii) Use the local criterion to check whether the map to  $\mathbb{P}^4_k$  determined by  $s_0, s_1, s_2, s_3, s_5$ is a closed immersion if  $char(k) \neq 2$ . What happens if char(k) = 2?

The last exercise is not strictly necessary for the understanding of the lectures at this point.

**Exercise 65.** Locally free sheaves on  $\mathbb{P}^1$  (6 extra points)

Show that every locally free coherent sheaf  $\mathcal{F}$  of rank  $r \geq 1$  on  $\mathbb{P}^1_k$ , where k is any field, is of the form

$$\mathcal{F} \cong \mathcal{O}(a_1) \oplus \cdots \oplus \mathcal{O}(a_r),$$

where the  $a_i$  are uniquely determined by  $\mathcal{F}$  up to permutation, by following the steps below:

- (i) Show that the set of  $n \in \mathbb{Z}$  such that there is an injection  $i: \mathcal{O}(n) \hookrightarrow \mathcal{F}$  is non-empty and bounded from above. Show that if n is maximal, then  $\mathcal{F}/\mathcal{O}(n)$  is locally free of rank r - 1.
- (ii) Show that if  $\mathcal{F}$  has rank 2 and the maximal n in (i) is -1, then  $\mathcal{F}/\mathcal{O}(-1) \cong \mathcal{O}(m)$  for some m < 0. Deduce that, for arbitrary locally free coherent  $\mathcal{F}$  of rank r, there exists a filtration

$$0 = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \mathcal{F}_2 \subset \ldots \subset \mathcal{F}_r = \mathcal{F}$$

such that  $\mathcal{F}_i$  is locally free of rank i and such that  $\mathcal{F}_i/\mathcal{F}_{i-1} \cong \mathcal{O}(a_i)$  with  $a_1 \geq \cdots \geq a_r$ .

- (iii) Prove that for every  $\mathcal{F}$  with a filtration as in (ii) we have  $\mathcal{F} \cong \mathcal{O}(a_1) \oplus \ldots \oplus \mathcal{O}(a_r)$  and the  $a_i$  are uniquely determined by  $\mathcal{F}$ .
- (iv) Deduce the following normal form for matrices over  $k[t, t^{-1}]$ :

Let M be an  $r \times r$  matrix over  $k[t, t^{-1}]$  with determinant  $t^n$  for some  $n \in \mathbb{Z}$ . Then, there exist matrices  $A \in \mathrm{GL}_r(k[t^{-1}])$  and  $B \in \mathrm{GL}_r(k[t])$  such that

$$A \cdot M \cdot B = \begin{pmatrix} t^{a_1} & & & 0 \\ & t^{a_2} & & \\ & & \ddots & \\ 0 & & & t^{a_r} \end{pmatrix}$$

with  $a_1 \geq a_2 \geq \ldots \geq a_r$ ,  $a_i \in \mathbb{Z}$ , and the  $a_i$  are uniquely determined by M.

(Hint: First, note that every locally free coherent sheaf on  $\mathbb{A}^1_k$  is free and use M to glue  $k[t]^r$  with  $k[t^{-1}]^r$  over  $k[t,t^{-1}]$  to a locally free sheaf on  $\mathbb{P}^1_k$ .